DNA Demethylation in Zebrafish Involves the Coupling of a Deaminase, a Glycosylase, and Gadd45
نویسندگان
چکیده
Evidence for active DNA demethylation in vertebrates is accumulating, but the mechanisms and enzymes remain unclear. Using zebrafish embryos we provide evidence for 5-methylcytosine (5-meC) removal in vivo via the coupling of a 5-meC deaminase (AID, which converts 5-meC to thymine) and a G:T mismatch-specific thymine glycosylase (Mbd4). The injection of methylated DNA into embryos induced a potent DNA demethylation activity, which was attenuated by depletion of AID or the non enzymatic factor Gadd45. Remarkably, overexpression of the deaminase/glycosylase pair AID/Mbd4 in vivo caused demethylation of the bulk genome and injected methylated DNA fragments, likely involving a G:T intermediate. Furthermore, AID or Mbd4 knockdown caused the remethylation of a set of common genes. Finally, Gadd45 promoted demethylation and enhanced functional interactions between deaminase/glycosylase pairs. Our results provide evidence for a coupled mechanism of 5-meC demethylation, whereby AID deaminates 5-meC, followed by thymine base excision by Mbd4, promoted by Gadd45.
منابع مشابه
DNA Cytosine Demethylation: Are We Getting Close?
Whether 5-methylcytosine (meC) can be enzymatically removed from vertebrate DNA has been the subject of extensive study and also some controversy. Rai et al. (2008) now report that cytosine demethylation can be accomplished in a one-cell zebrafish embryo by the combined action of a cytidine deaminase and a thymine DNA glycosylase.
متن کاملUracil-DNA Glycosylase Is Involved in DNA Demethylation and Required for Embryonic Development in the Zebrafish Embryo*
Uracil-DNA glycosylase (Ung) is a component of the base excision repair process and has the ability to remove uracil from U:G mispairs in DNA. However, its implications in development of vertebrate embryos are poorly understood. In this study, we found that zebrafish uracil-DNA glycosylase a (Unga) is maternally expressed at high levels and accumulated in nuclei during cleavage and blastulation...
متن کاملGadd45a promotes DNA demethylation through TDG
Growth arrest and DNA-damage-inducible protein 45 (Gadd45) family members have been implicated in DNA demethylation in vertebrates. However, it remained unclear how they contribute to the demethylation process. Here, we demonstrate that Gadd45a promotes active DNA demethylation through thymine DNA glycosylase (TDG) which has recently been shown to excise 5-formylcytosine (5fC) and 5-carboxylcyt...
متن کاملNo Evidence for AID/MBD4-Coupled DNA Demethylation in Zebrafish Embryos
The mechanisms responsible for active DNA demethylation remain elusive in Metazoa. A previous study that utilized zebrafish embryos provided a potent mechanism for active demethylation in which three proteins, AID, MBD4, and GADD45 are involved. We recently found age-dependent DNA hypomethylation in zebrafish, and it prompted us to examine if AID and MBD4 could be involved in the phenomenon. Un...
متن کاملBiochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA
Active DNA demethylation in mammals occurs via hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation family of proteins (TETs). 5hmC residues in DNA can be further oxidized by TETs to 5-carboxylcytosines and/or deaminated by the Activation Induced Deaminase/Apolipoprotein B mRNA-editing enzyme complex family proteins to 5-hydromethyluracil (5hmU). E...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 135 شماره
صفحات -
تاریخ انتشار 2008